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The wave resistance of a body in steady supersonic gas flow is equal to zero, if this body 
does not produce shock waves, and the flow does not become discontinuous. An example 
of this is the Bnsemann biplane. A simple investigation, leaving out the detailed stmcture 
of the flow, enables us to find another upper bound for the wave resistance for given para- 
meters of the body. 

From the momentum theorem, there a 

relation between the interacting force of 

the gas jet on the body and the angle of 

deflection of the jet from the initial direc- 

tion can be derived. For the maximum drag 

to occur, we must fiid the best method to 

FIG. 1. 

turn the flow, drawing the greatest possible 

mass of gas into it. The solution of the 

problem may be based either on plane 

flow or on axisymmetric flow, as shown in Fig. 1. The gas trapped by the diffuser is ejec 

ted in a direction opposite to the incoming flow. The lines kl and pg are shock waves, and 

the line mn is the dividing streamline. This example shows that the body being sought need 

not be a continuous solid body, but the gasmay flow throngh a control volume (e.g. sagh ) 

enclosing it. In view of the complexity of the,interaction of the two part8 of the flow in the 

region qpkl, it is advisable as a first step to leave out the stmcture of the flow at the wall, 

and to obtain an estimate for the magnitude of the wave resistance. 

The equations of gas dynamics are 

9 / [PUV 012 - (p + pus) dy] = 

p = @+I 
Y 

P = (pwy-1 

w= x+1 
2% -%+(lla + v2) 

0, LyVp(vdx-udy)= 0 

(1) 

,pz-p*K k=--&) 
Pk ’ 
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Here L is the boundary of an arbitrary flow region, which may be multiply-connected, 

x, y are the Cartesian coordinates, u. v the components of the velocity vector in the x-y 

directions, respectively, relative to the critical velocity a+ , p is the density, relative to 

the density pa, upstream, p is the pressure, relative to po3a,r; cp is the entropy function, 

K is the adiabatic exponent and v equals 0 or 1 respectively for plane or axisymmetric 

geometry. 

Let the front part of the body, through the surfaceof which gas may flow, be bounded 

by the rectangle 0 Q z < X, 0 Q y < Y,where A’, Y are given numbers. We select a con- 

trol volume in the following manner. Let so denote a Mach line of the uniform incoming 

flow starting from some point o. If the body is close to that shown in Fig. 1, then the 

point o will be the fmnt point of a sharp profile. From this point attached shock waves 

may generate. If the body results in a detached shock wave, then we choose the point a 

to be the intersection of the shock wave with the streamline, which divides the gas flowing 

through the inside of the body. The remaining part of the contour through which gas may 

flow will be denoted by ah. The contour ash is closed by the axis of symmetry, and forms 

the body surface. 

The arbitrariness in the choice of the control volume permits us, in particular, to ex- 

plain the role of the bow shock in increased drag. If for theobtained maximum force on the 

body, it is necessary to influence the gas not passing through the shock, then the results 

of the solution of the variational problem permits further deductions on the drag estimate. 

Parameters of the incoming flow will be given the subscript @J. The equation of the 

line oh will be written as y = f (xl. Th en, by virtue of the first equation in (l), the resul- 

tant pressnre in the x-direction equals 

(x + 1) Ya"+l 
*h 

x = 2% (V + 4) (1 + %12) + s r [(P f PUT f’ - puvldz (21 

ra 

Heretao,, is the velocity of the incoming flow. To transform the first term of the right- 

hand side of (2), we use thelast three equationsof (1). If the total outflow of the gas across 

the contour ash equals zero, then the second equationof (1) gives 

“h 

y=o= w& + 5 fyp (uf’ - v) dx 

xa 

(3) 

To pose the variational problem for the determination of the body with maximum drag, 

it ia necessary, in addition to the fitnctional (2) and condition (3). to consider the equations 

of gas dynamics, relations on any discontinaities that result, and the boundary conditions 

of the problem. Such a complete determination is not attempted in the present paper. 

We shall consider the problem, based only on equalities (2) and (31, the conditions 

0 B f (4 Q Y for 0 Q x < X (4) 

and the obvious condition 

CPBPCXJ (5) 

expressing the non-decrease of entropy across a ahock wave. The solution of this problem 

may lead to such flowparameters on the line oh which cannot be realized. If in addition a 
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front shock wave turns out to be uuuecceeary, then the value thne foandmuet be considered 

as the upper limit of the drag. 

The following variational problem arises. It is required to find the function8 f dr), 

II (z), o (z) and ‘p G), for which the maximum of the functional (2) is obtained, under con- 

ditions (3) - (5) and given values of woo, X. Y. 

We constmct the functional 
J=x+k’Z’ 

F 
J=, +1% “+I + s” @ (f, f’, w, 6, cp) dz, 

F = (x + 1) (1 + wcoB) 

2x + nw, 

% 

Q = f” [(p + pm* cosr 6) f’ - pw* sin 6 cos 6 - hpw (sin 6 - f’ Cos tr)] 

Here A is a constant Lagrange multiplier, w is the modulus of the velocity, and 8 is 

the angle of inclination of the velocity to the z-axis. 

We first assume that cp = (Pi, and calculate the first variation 

6J = (Fy” - Q’f’) a “Y. - @$za + (qd h 6Y, + 

$t 5” [(Qf - $ at’) Sf f q$h + up] dz 

6) 

Here the subscriptsaf, f’, w, 6denote partial derivatives 

(FY” - Qj4u = yo” ]F - @ f pw* COG 6 $ Lpto co9 e),,] 

(@j4h = Yhy (P+ pm* cos’ 6 + Ifno cos 6), 

The double subscript ah indicates that a quantity is taken at the point a as it is 

approached from the point h. 

Other quantities appearing in equation (6) have the form 

a$ - & a+’ = 3 - $ [f”(p + pw2 co@ 6 + hpw cos @I 

f”P 
@xl =- x+l-((x-f)w2 

(2w (x + 1 - xwp) (sin 6 - f’ cos 6) cos 8 + 

+ [x + 1 - (x - 1) UP] wf’ + h (X + 1) (1 - UP) (sin 6 - f’ co9 6)) 

me = - fp [w2 (cos 2-6 + f’ sin 26) + hw (cos 6 + f’ sin ct)] 

The necessary condition for the maximum x is 6J f 0 for the admissible variations. 

From (a), it is clear that this condition is satisfied when 

xo = 0, Yh = y (7) 

and if the following conditions hold 

@, > 0, (@f),, > o (8) 

(FY” - @$a = 0 (9) 

d 
@j - dr u)f = 0, 0, = 0, @a = 0 (0 < x d X) 

(IO) 

Inequalities (8) ensure 6 J < 0 on the grounds that the admissible variations satisfyfng 

equation (7) also satisfy the conditions &co > 0, 6yh Q 0. 

The functions f Gc), w (z) and 6 (2) with 0 f z < X and the quantity ys are feund 
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from equations (10) and (9). h is found from equation (3). After this, condition (8) must be 

verified. 

One particular solution in the plane and axisymmetric cases is given by 

(f’)_’ = 0, w = 1, 6=n 

In this case, thegasis turned round against theincoming flow at sonic velocity. In 

actuality, such a flow can be realized for a finite-dimensional body. 

In the plane case, v = 0, the quantity @f is zero, and the first equationin (10) gives 

p + pw2 Co+ 6 + hpw cos 6 = const 

This equation, together with the second and third equationsof (IO), shows thatin 

Y t h 
a 

Y rrl 
5 x 

FIG. 2. f (4 = Y, 6 2 arc cos - 
i ( 

(x + 1) (w’ - 1) “2 
&>” 11 

To find the necessary quantities, the valuesof w and Y are given under the condition 

Ifw\c I/(x+ 1)/(X-- j), the quantities f and fi are found from (ll),u),from (9), and 

plane flow the quantities f’, w and 6 for 0 < 1: < ,Y are 

all constant. 

Another particular solution for plane flow is given by 

(11) 

X = xh is calculated from equation (3) for y. = Y and xo = 0. This solution stipulates the 

maximum mass of the gas trapped by the diffusor, which then turns it into the opposite 

direction. 

In the axisymmetric case, the solution determined by equation (10) does not exist for 

all values of wW, X and Y. The line oh being sought may consist of two pieces (Fig. 2). 

On the part ot a two-sided extremum is realized, while the piece th is defined by the equa- 

tion f (x) = Y for a single-sided admissible variation 6f < 0. In this case, the functional 1 

is written as 

J = $ Fy,:! + T’ @dx + r” @ dx 
L 

.“,I .’ 1 

The first variationof this functional equals 

6J = (Fya - U+)a bya - ‘Ba~xcL 4- (@,, - qh) 6q + (@,‘)h 6Y, + 

Here the double subscripts indicate that the quantities are taken at thepoint t as it is 

approached from the side of the points specified by the second subscript. Functions w Cx) and 

6(x) may have discontinuities at the point t. 

To ensure the inequality of 6J < 0 we require the following conditions to be satisfied 

(1, j ‘1, (Of’)h > 0 (12) 
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(Fy2 - a+ j, = 0 
(13) 

@!a - Olh = 0 

- -$ Qj’ = 0, 

(14) 

@f @, = 0, 0* = 0 (0 < ZJ < ZJ (15) 

f (2) = Y, ow = 0, 0, = 0 (“t f 2 < X) (16) 

O’f 
--$+o (zt < x < X) 

(17) 

The second and third equations in (16), apart from w and-e’, contain only constant 

quantities. From this it follows that t4 and 6 are constant ou the segment th. 

f.8 w 

FIG. 3. 

f.2 H 

FIG. 4. 

For given valueeof w,;Xand Y, the quantities A, y,, zt and the functions f (r), w(z), - _ 
and 8 (x) in theinterval at, and the quantities f, w and u in th are determined by equations 

(3), (13)-(16), and the boundary condition f (ri) = Y. .After determining them, it is nccem- 

sary to verify that conditions (12) and (17) are satisfied. Condition (17) can be simplified 

with the help of the relations f (x) = Y, w (w) = const, and s(x) = const and assumea the 

form 
pw sin 6 (ZL cos 6 +- 3L) f 0 

(18) 

A particular solution of this type is obtained for nt = 0 when a11 thegas entering the 

inside of the body is ejected across a cylindrical lateral surface. In this c~sc, conditions 

(3), (12), (13), (16) and (17) must be satisfied. 

Let there now be an admissible entropy increase cp < cp,. We introduce the notation 

cp = qrn(P*, where 0 < cp* < 1. In expression (6), there now appears for the first variation 

81 an additional term 

We substitute into this expression the functions found from the solution with IJI = W,. 

The assumed variation &q~, satisfies the condition &I, < 0. Consequently, the condition 

6J, < 0 is satisfied for 

@>O (0 < z f X) (19) 

Thus, after finding the solution from equations (3). (9) and (10) or from (3). (13) -_(16), 

it is necessary to verify that conditions (8). (19) , or (12), (18) and (19) are satisfied. The 
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2.0 
I ii 

u 08 H FIG. 6. 

FIG. 5. 

satiafaction of the first condition of (8) is then ensured by the satisfaction of condition (19). 

Numerical examples for equations (9) and (10) were carriedout with K = 1.4 for plane 

and axiaymmetric flows. For all values ofw& the supersonic interval 

i<lo,< I-(x+ Q/(x-- 4) and for all values of the ratio L = X/ Y in the interval 

0 < L < 00 conditions (8) and (19) are satisfied. From this, it follows that at least for 

K = 1.4, the maximum drag is obtained by the flow of a gas past a body without any shock 

waves. 

The computed results for the plane problem are given in Figs. 3 -6. In all cases, the 

parameter for the curves is the incoming velocityw,. InFig.3, the full lines indicate the 

dependenceof 6on w, and the dashed line gives the locus of the points of the particular 

solution (11). In Figs. 4-6, the dependence of the quantities W, y. , and the coefficient of 

wave resistance cx on the quantity H are given, where 

CX = 2xIEuca3Y, H = arc tan f’ 

In axisymmetric flow, the coefficient cx is defined by the formula 

CX = 4x/w,=Ya 

Its value agrees with cx in plane flow, when H = 0 or H = n%, where 

yh - % 
H = arc tan - 

xh - xa 

In theintermediate cases, the coefficient of wave resistance of a body of revolution, 

within the accuracy of Fig. 6, doeenot differ from the valuesof cx for plane bodies. 

We remark that for a Mach number of theincoming flow M = 4, for example, the maximum 

drag of a body of revolution may be twice as large as the wave resistanceof a semi-infinite 

cylinder with plane nose section in the case of axisymmetry. To make such comparisons, we 

used the calculations of axisymmetric flow with detached shocks given in [I]. 
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